California Geothermal Resource

Resource Workshop May 9, 2005

Elaine Sison-Lebrilla Resource Manager PIER Program-Renewables

Strategic Value Analyses (SVA) to Date

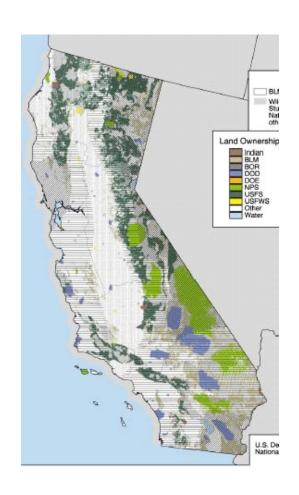
- Identify, quantify and map electricity system needs out through 2017 (capacity, reliability, transmission)
 - Selected years (2003, 2005, 2007, 2010 & 2017)
- Identify and map out geothermal resources
 - Wind, solar, biomass and water (hydro & ocean)
- ◆ Project environmental, cost and generation performance of renewable technologies through 2017
 - > Projections developed by PIER Renewable staff; corroborated by work done by EPRI, NREL and Navigant
- Conduct combined GIS and economic analyses to obtain "best-fit, least-cost" approach
- Develop RD&D targets that help drive forward renewables capable
 of achieving identified benefits

SVA Geothermal Approach

- ◆ Identification and Qualification of Resource
- Calculation of the Cost of Geothermal Electricity Generation
- ◆ Addition of New Geothermal Resource to the Grid

SVA Geothermal Team

- ◆ CEC Staff
- ♦ GeothermEx, Inc.
- ◆ McNeil Technologies
- Davis Power Consultants, Anthony Engineering, and PowerWorld


Mapping CA's Geothermal Resources

- Identify the types and amounts of Geothermal that can help resolve "hot spots"
- Existing data not readily useful
 - > Not transferable to GIS
- Geothermal resource assessment-identifies and quantifies resource
- ◆ Data transferred into GIS format

Visual Comparison of Gross vs Technical Geothermal Potentials

Identification and Qualification of Geothermal

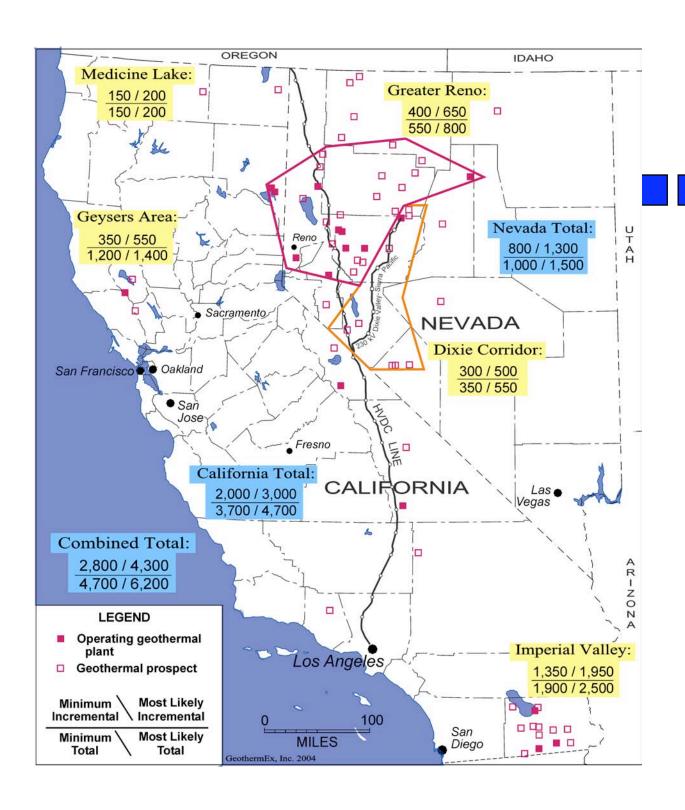
◆ Resources Assessment by GeothermEx, Inc.

Scope of Work

- **♦** Two main components:
 - > Geothermal reserves
 - > Estimates of capital costs

Project Maturity

 Challenge has been to objectively assess and compare resources at different stages of development



Exploration – Development Categories

- & Existing power plant is operating
- No operating plant, but at least 1 well with tested capacity of 1 MW or more
- No well tested at 1 MW or more, but downhole temperature of at least 212°F
- Not meeting A, B, or C: resource properties from other sources (geology, geochemistry, geophysics)

Generation
Capacities
of Major
Geothermal
Resource Areas
in California
and Nevada
(Gross MW)

Calculation of Reserves

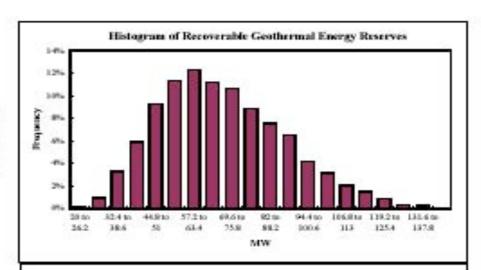
SUMMARY OF INPUT PARAMETERS

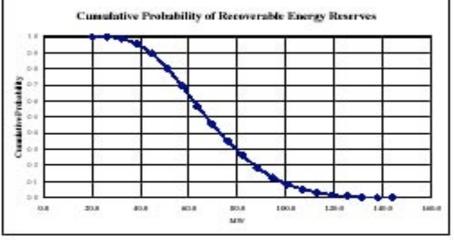
Variable Parameters
Reservoir Arm (eq. mi.)
Reservoir Thickness (ff)
Rock Possity
Reservoir Temperature (TV)

Roseronic Tomperature ("P) Recovery Factor

Minimum	Most Likely	Maximum		
0.9	1.8	2.7		
3000	3500	4000		
0.1	22	0.7		
490	500	520		
0.10		0.20		

Fixed Parameters


Rock Voltametric Heat Capacity Rejection Temperature Utilization Factor Flust Capacity Factor Forwar Plant Life


BTUKE RT
.k
2.5
Switze

RESULTS

Statistics					
	New	MW/sq. mi.	Receivery Efficiency		
Marga	69.54	36.57	1.78%		
Std. Deviation	20.56	7.90	0.34%		
Minimum (90% profs.)	44.60	28.04	1.51%		
Mont-Blody (Modal)	62.20	34.00	1.32%		

Figure BRW03-3:
Probabilistic Calculation of Geothermal Energy Reserves
SOUTH BRAWLEY GEOTHERMAL AREA, CALIFORNIA

Most-Likely Geothermal Resource Capacity

		MLK	Existing	MLK-Existing
Geothermal Resource Area	County	MW	Gross MW	MW
Brawley (North)	Imperial	135	0	135
Brawley (East)	Imperial	129	0	129
Brawley (South)	Imperial	62	0	62
Dunes	Imperial	11	0	11
East Mesa	Imperial	148	73.2	74.8
Glamis	Imperial	6.4	0	6.4
Heber	Imperial	142	100	42
Mount Signal	Imperial	19	0	19
Niland	Imperial	76	0	76
Salton Sea (including Westmoreland)	Imperial	1750	350	1400
Superstition Mountain	Imperial	9.5	0	9.5
	Imperial Total:	2487.9	523.2	1964.7
Coso Hot Springs	Inyo	355	300	55
Sulfur Bank Field, Clear Lake Area	Lake	43	0	43
Geysers [Lake & Sonoma Counties]	Sonoma	1400	1000	400
Calistoga	Napa	25	0	25
	The Geysers Total:	1468	1000	468
Honey Lake (Wendel-Amedee)	Lassen	8.3	6.4	1.9
Lake City/ Surprise Valley	Modoc	37	0	37
Long Valley (mono- Long Valley) Mammoth Pacific Plants	Mono	111	40	71
Randsburg	San Bernardino/ Kern	48	0	48
Medicine Lake (Fourmile Hill)	Siskiyou	36	0	36
Medicine Lake (Telephone Flat)	Siskiyou	175	0	175
Sespe Hot Springs	Ventura	5.3	0	5.3
т	otal:	4732	1870	2862

Summary

- ◆ Technical Reserves (Gross MW)
 - ► Estimated Most Likely In California: 4,700 MW
 - ► Estimated Incremental In California: 3,000 MW
- **♦** Filtering Constraints
 - > Economics
 - > Transmission

Contact Information

Elaine Sison-Lebrilla (916) 653-0363

esisonle@energy.state.ca.us

